Bott–Thom isomorphism, Hopf bundles and Morse theory

نویسندگان

چکیده

Based on Morse theory for the energy functional path spaces we develop a deformation mapping of spheres into orthogonal groups. This is used to show that these are weakly homotopy equivalent, in stable range, associated Clifford representations. Given an oriented Euclidean bundle $V \to X$ rank divisible by four over finite complex $X$ derive decomposition result vector bundles sphere $\mathord{\mathbb S}( \mathbb{R} \oplus V)$ terms and module $X$. After passing topological K-theory results imply classical Bott-Thom isomorphism theorems.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morse Theory and Hyperkähler Kirwan Surjectivity for Higgs Bundles

This paper uses Morse-theoretic techniques to compute the equivariant Betti numbers of the space of semistable rank two degree zero Higgs bundles over a compact Riemann surface, a method in the spirit of Atiyah and Bott’s original approach for semistable holomorphic bundles. This leads to a natural proof that the hyperkähler Kirwan map is surjective for the non-fixed determinant case. CONTENTS

متن کامل

Morse Theory for the Space of Higgs Bundles

Here we prove the necessary analytic results to construct a Morse theory for the YangMills-Higgs functional on the space of Higgs bundles over a compact Riemann surface. The main result is that the gradient flow with initial conditions (A, φ) converges to a critical point of this functional, the isomorphism class of which is given by the graded object associated to the HarderNarasimhan-Seshadri...

متن کامل

Stable Bundles on Hopf Manifolds

In this paper, we study holomorphic vector bundles on (diagonal) Hopf manifolds. In particular, we give a description of moduli spaces of stable bundles on generic (non-elliptic) Hopf surfaces. We also give a classification of stable rank-2 vector bundles on generic Hopf manifolds of complex dimension greater than two.

متن کامل

Linking and Morse Theory

A. In this paper we use Morse theory and the gradient flow of a Morse-Smale function to compute the linking number of a two-component link L in S 3 , by counting the signed number of gradient flow lines passing through each component of L. We will also use three Morse-Smale functions and their gradient flows, to compute Milnor's triple linking number of three-component links by counting ...

متن کامل

Supersymmetry and Morse Theory

It is shown that the Morse inequalities can be obtained by consideration of a certain supersymmetric quantum mechanics Hamiltonian. Some of the implications of modern ideas in mathematics for supersymmetric theories are discussed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The São Paulo Journal of Mathematical Sciences

سال: 2021

ISSN: ['2316-9028', '1982-6907']

DOI: https://doi.org/10.1007/s40863-021-00215-6